首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   4篇
地球物理   2篇
地质学   2篇
海洋学   25篇
综合类   1篇
  2020年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   15篇
  2011年   4篇
  2009年   2篇
  2007年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.  相似文献   
2.
Aerosol optical thickness (AOT) was retrieved from the Geostationary Ocean Color Imager (GOCI) on board the Communication, Ocean, and Meteorological Satellite (COMS) for the first time. AOT values were retrieved over the ocean at a spatial scale of 0.5 × 0.5 km2 by using the look-up table (LUT)-based separation technique. The radiative transfer model (RTM) was used for different models of atmosphere-ocean environmental conditions, taking into account the realistic variability of scattering and absorption. Ocean surface properties affected by whitecaps and pigment content were also taken into account. The results show that the radiance observed by the GOCI amounts to only 5% of the radiation that penetrated the ocean and, consequently, 95% of the radiation is scattered in the atmosphere or reflected at the ocean surface in the visible wavelengths longer than 0.6 ìm. Within these wavelengths, radiance variations at the top of atmosphere (TOA) due to pigment variations are within 10%, while the radiance variation due to wind speed is considerably higher. For verification of GOCI-retrieved AOTs, comparison between GOCI and ground-based sunphotometer measurement at Gosan, Korea (126.10°E, 33.23°N)) showed good correlation (r = 0.99). The GOCI observations obtained by using the proposed technique showed promising results for the daily monitoring of atmospheric aerosol loading as well as being useful for environmental supervisory authorities.  相似文献   
3.
Ocean-color imagers on conventional polar-orbiting satellites have a revisit time of ??2 days for most regions, which is further reduced if the area is frequently cloudy. The Geostationary Ocean Color Imager (GOCI), the first ocean-color imager on a geostationary satellite, provides measurements 8 times a day, thus significantly improving the frequency of measurements for studies of ocean environments. Here, we use results derived from GOCI measurements over Taihu Lake to demonstrate that the extra sampling can be used to improve the accuracy of statistically averaged longer-term (daily) measurements. Additionally, using numerical simulations, we demonstrate that the coupling of diurnal variations of both biomass and photosynthetic available radiation can improve the accuracy of daily primary production estimates. These results echo that higher sampling frequency can improve our estimates of longer-term dynamics of biogeochemical processes and highlights the value of ocean color measurements from geostationary satellites.  相似文献   
4.
From 2007 to 2011, large-scale green tides formed by unattached filamentous alga, Ulva prolifera in Ulva linzaproceraprolifera complex, have initially occurred in Jiangsu coasts of China. The real niche or the substrate(s) on which U. prolifera attaches before it starts to float is still under debate. However, great numbers of Ulva propagules would be supposed to exist in the microscopic, overwintering stage for the next spring's bloom in coastal environments. This study was designed to confirm the above prediction and investigate abundance, species composition and growth characteristics of Ulva propagules in the sediments. Quantification result showed that Ulva propagules widely distributed in the sediments and the abundance of these isolates did not change much over a 3-month testing period at low temperature in darkness. Molecular data based on three DNA markers revealed that four Ulva species existed in the sediments, among which green-tide forming alga, U. prolifera, was included. Elevated levels of temperature, irradiance as well as nutrients in seawater greatly facilitated recovery and growth of propagules. Results of this investigation indicated the possibility of microscopic propagules turning directly into floating biomass in season when temperature, irradiance and nutrients together meet the required levels in questioned coastal water area.  相似文献   
5.
Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.  相似文献   
6.
The seasonality of primary productivity plays an important role in nutrient and carbon cycling. We quantify the seasonality of satellite-derived, oceanic net primary production (NPP) and its interannual variability during the first decade of the SeaWiFS mission (1998 to 2007) using a normalized seasonality index (NSI). The NSI, which is based upon production half-time, t(1/2), generally becomes progressively more episodic with increasing latitude in open ocean waters, spanning from a relatively constant rate of primary productivity throughout the year (mean t(1/2) ~5 months) in subtropical waters to more pulsed events (mean t(1/2) ~3 months) in subpolar waters. This relatively gradual, poleward pattern in NSI differs from recent estimates of phytoplankton bloom duration, another measure of seasonality, at lower latitudes (~40°S–40°N). These differences likely reflect the temporal component of production assessed by each metric, with NSI able to more fully capture the irregular nature of production characteristic of waters in this zonal band. The interannual variability in NSI was generally low, with higher variability observed primarily in frontal and seasonal upwelling zones. The influence of the El Niño–Southern Oscillation on this variability was clearly evident, particularly in the equatorial Pacific, where primary productivity was anomalously episodic from the date line east to the coast of South America in 1998. Yearly seasonality and the magnitude of annual production were generally positively correlated at mid-latitudes and negatively correlated at tropical latitudes, particularly in a region bordering the Pacific equatorial divergence. This implies that increases of annual production in the former region are attained over the course of a year by shorter duration but higher magnitude NPP events, while in the latter areas it results from an increased frequency or duration of similar magnitude events. Statistically significant trends in the seasonality, both positive and negative, were detected in various patches. We suggest that NSI be used together with other phenomenological characteristics of phytoplankton biomass and productivity, such as the timing of bloom initiation and duration, as a means to remotely quantify phytoplankton seasonality and monitor the response of the oceanic ecosystem to environmental variability and climate change.  相似文献   
7.
An analysis of the radar backscattering from the ocean surface covered by oil spill is presented using a microwave scattering model and Monte-Carlo simulation. In the analysis, a one-dimensional rough sea surface is numerically generated with an ocean waveheight spectrum for a given wind velocity. A two-layered medium is then generated by adding a thin oil layer on the simulated rough sea surface. The electric fields backscattered from the sea surface with two-layered medium are computed with the method of moments (MoM), and the backscattering coefficients are statistically obtained with N independent samples for each oil-spilled surface using the Monte-Carlo technique for various conditions of surface roughness, oil-layer thickness, frequency, polarization and incidence angle. The numerical simulation results are compared with theoretical models for clean sea surfaces and SAR images of an oil-spilled sea surface caused by the Hebei (Hebei province, China) Spirit oil tanker in 2007. Further, conditions for better oil spill extraction are sought by the numerical simulation on the effects of wind speed and oil-layer thickness at different incidence angles on the backscattering coefficients.  相似文献   
8.
Accurate predictions of benthic macrofaunal biodiversity greatly benefit the efficient planning and management of habitat restoration efforts in tidal flat habitats. Artificial neural network (ANN) prediction models for such biodiversity were developed and tested based on 13 biophysical variables, collected from 50 sites of tidal flats along the coast of Korea during 1991–2006. The developed model showed high predictions during training, cross-validation and testing. Besides the training and testing procedures, an independent dataset from a different time period (2007–2010) was used to test the robustness and practical usage of the model. High prediction on the independent dataset (r = 0.84) validated the networks proper learning of predictive relationship and its generality. Key influential variables identified by follow-up sensitivity analyses were related with topographic dimension, environmental heterogeneity, and water column properties. Study demonstrates the successful application of ANN for the accurate prediction of benthic macrofaunal biodiversity and understanding of dynamics of candidate variables.  相似文献   
9.
Hu  Dunxin  Wang  Fan  Sprintall  Janet  Wu  Lixin  Riser  Stephen  Cravatte  Sophie  Gordon  Arnold  Zhang  Linlin  Chen  Dake  Zhou  Hui  Ando  Kentaro  Wang  Jianing  Lee  Jae-Hak  Hu  Shijian  Wang  Jing  Zhang  Dongxiao  Feng  Junqiao  Liu  Lingling  Villanoy  Cesar  Kaluwin  Chalapan  Qu  Tangdong  Ma  Yixin 《中国海洋湖沼学报》2020,38(4):906-929
The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.  相似文献   
10.
This paper proposes and tests a method of producing macrofauna habitat potential maps based on a weights-of-evidence model (a probabilistic approach) for the Hwangdo tidal flat, Korea. Samples of macrobenthos were collected during field work, and we considered five mollusca species for habitat mapping. A weights-of-evidence model was used to calculate the relative weights of 10 control factors that affect the macrobenthos habitat. The control factors were compiled as a spatial database from remotely sensed data combined with GIS analysis. The relative weight of each factor was integrated as a species potential index (SPI), which produced habitat potential maps. The maps were compared with the surveyed habitat locations, revealing a strong correlation between the potential maps and species locations. The combination of a GIS-based weights-of-evidence model and remote sensing techniques is an effective method in determining areas of macrobenthos habitat potential in a tidal flat setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号